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LE'ITER TO THE EDITOR 

Optical bistability in dispersive and absorptive media 

P Schwendimann 
Institut fur Theoretische Physik, Universitat Bern, CH-3000 Bern, Switzerland 

Received 17 October 1978 

Abstract. The relevance of dispersion in optical bistability is outlined. The results are 
compared with those for absorptive bistability, and a connection with experiments is 
discussed. 

Most experiments on optical bistability deal with dispersive systems such as Na gas 
(Gibbs et a1 1976, 1978) and ruby (Venkatesan and McCall 1977), or with crystals 
showing electro-optical nonlinear effects (Smith et a1 1978, Garmire et a1 1978). The 
theory, however, is mainly concerned with the transmission properties of absorbers 
(McCalll974, Bonifacio and Lugiato l976,1978a, b, Narducci et a1 1978, Carmichael 
and Walls 1978, Willis 1977). A theory for the dispersive case exists only for a medium 
showing third-order nonlinearity (Marburger and Felber 1978). 

The aim of this letter is to relate the different experimental and theoretical 
approaches by emphasising the role of nonlinear dispersion in optical bistability. For 
the sake of simplicity, we shall discuss in detail the transmission properties of a 
two-level atomic system only. Our conclusions, however, are valid for more general 
dispersive systems, as we shall discuss later. Some preliminary results on dispersive 
bistability in two-level atomic systems have been reported by Bonifacio and Lugiato 
(1978~) .  We start from an N two-level atomic system interacting in a cavity with an 
electromagnetic field E(z,  t). The mirrors of the cavity are characterised by a trans- 
mittivity T and a reflectivity R = 1 - T. The Maxwell-Bloch equations in the dipole, 
rotating wave and slowly varying envelope approximations read 

where S' are the complex components of the polarisation, S3 = (NI  - N2)/2 is the 
inversion, E* are the positive and negative frequency components of the electromag- 
netic field, y11, yI are the inverse longitudinal and transverse atomic relaxation times, A 
is the dipolar coupling constant, and Au is the difference between atomic transition and 
field carrier frequencies. At time t=0 ,  the atoms are in their ground state, i.e. 

There exists a well defined limit in which equations (1) reduce formally to that for a 
monomode field interacting with a two-level system. This limit has been discussed by 
Bonifacio and Lugiato (1978b) for a ring cavity and by Meystre (1978) for a Fabry- 
PCrot cavity. We sketch this procedure for (1) in the stationary case. First integrate (1) 

S3 = N/2. 
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over the cavity length L and use the factorisation ansafz 
L 

(AB)=L-' dzA(z)B(z) = ( A ) @ )  
0 

where A, B can be field as well as atomic variables. The unsufz (2) is justified in the 
limit (Bonifacio and Lugiato 1978a, b, c) 

(YL --* 0, T - 0  (3a )  

(YL/ T = const ( 3 b )  

where (Y = A2N/cyl is the absorption constant, and c is the velocity of light. Using (2) 
and (3) from (l), we obtain in the limit f - CO 

( yI T iAw)S* = T2iAT-1/2E'S3 ( 4 a )  

y$S, - N/2) = iAT-1/2(E'S-- E-S') (46)  

K(E+ -I??) = &AS* ( 4 c )  
where K = cT1l2/L. In deriving (4) we have assumed boundary conditions appropriate 
to a ring cavity, namely 

E(L) = E ~ T - ~ / '  

E(O)  = T ' / ~ E ~ +  RE(L) 

where Er and ET are the incoming and transmitted field respectively. From (4) we 
obtain the following relation between incoming and transmitted field: 

where x and y are the normalised amplitudes, namely 

The normalisation factor ( y lT /  yll)( y: + Aw2)/(2A)' corresponds to the saturation 
intensity in a dispersive medium. In (6) we have furthermore introduced the constants 

2 c 1  = A 2 y I ~ /  T ' / ~ K ( ~ :  + hW2) 

2 C2 = A ' A W N /  T'/'K ( y : + Am '). 

(8a )  

and 

( 8 6 )  

Both C1 and C2 can be expressed in terms of the absorption constant a, namely 

C1= (aL/2)[1+ (Aw/ yJ2] - l  

C2 = ( (~L/2) [1+ (A~/y,)~]-'Aw/yl. 

Equations (8b)  and (96) show that C2 is proportional to Aw. 
In the case of pure absorptive bistability, i.e. Aw = 0 (resonant case), C2 = 0. 

Therefore CZ measures the dispersive contribution to bistability. Since Aw > yI implies 
C2 > C1, the case C1/C2 + 0 characterises pure dispersive bistability. On the contrary 
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C1 measures the absorptive contribution to bistability. Equation (6) relates the 
incoming and transmitted field amplitudes through a complex nonlinear susceptibility. 
In order to discuss this relation it is useful to go over to field intensities, namely 

I1 = IT([ 1 + 2c1/ (1 + IT)]’ + 4c;/( 1 + IT)2}. (10) 

Since we are mainly interested in the properties of pure dispersive bistability, we first 
discuss (10) in the limit C1= 0. In this limit (10) shows the following characteristic 
behaviour: for C, < C2th, II is a single-valued function of IT, whereas for Cz > CZth an 
interval of I T  values exists for which II is a multi-valued function of IT. This behaviour 
of II versus I T  is characteristic of all descriptions of optical bistability. The threshold for 
bistable behaviour is given by 

c y  > 3J3/2 CZth. (11) 

This condition, when compared with that which holds for pure absorptive bistability, i.e. 
Ctbs > 4, shows that the threshold for pure dispersive bistability is lower than that for 
the pure absorptive case. 

When the corresponding threshold intensities of the incoming fields are compared, 
they give the ratio 

Iflisp/I;bs = 8/27. (12) 
Hence the threshold intensity for the dispersive case is only -30% of that required in 
the absorptive case. Equations (1 1) and (12) allow a quantitative explanation of the fact 
that experiments on optical bistability mainly deal with dispersive systems: threshold 
condition and intensity are smaller in the dispersive case. Indeed, from (10) with 
C1 # 0, C2 # 0, it can be shown that if C1 < 4 the pure dispersive case is approached, 
whereas if C1 > 4 the absorptive behaviour dominates. 

We can further illustrate this point by considering (6) in the limiting case C1 = 0 and 
I T <  1. In this limit, the relation between the intensities becomes 

II=IT[1+4C;(l-IT)’]. (13) 
Equation (13) is identical to the phenomenological expression proposed by Gibbs et a1 
(1976, 1978). In order to show this, we only have to normalise the intensities and 
identify R - 1, 4Cz = &//3 in Gibbs et al’s equation. The term 4C;(1- IT)2 cor- 
responds to the square of the phase + of the field. In fact, from (1) and (6), in the same 
approximation required for (13) it follows that 

- 2 cz( 1 - IT). (14) 
As is well known, (13) describes the bistable behaviour of an arbitrary dispersive 
medium in a cavity. The same approximations in the case of pure absorptive bistability 
lead to the equation 

(15) 

which does not show any bistable behaviour. 
Bistable behaviour can also be shown using different nonlinear dispersive models, 

e.g. nonlinear oscillators with fourth-order anharmonicity. In this case the relations 
(13) and (14) for intensities and phase still hold. The dispersive constant Cz has of 
course to be redefined in terms of the parameters of the system. This result seems to 
indicate that bistable behaviour is a general property of nonlinear systems and does not 
depend on the particular model chosen for the medium. 

= IT[ 1 + 2c1( 1 - IT)]’ 
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